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This paper presents an optimal control method for a class of @tributed-parameter systems governed by
first order, quasilinear hyperbolic partial differential e quations that arise in many physical systems. Such
systems are characterized by time delays since informatiois transported from one state to another by wave
propagation. A general closed-loop hyperbolic transport nodel is controlled by a boundary control embed-
ded in a periodic boundary condition. The boundary control is subject to a nonlinear differential equation
constraint that models actuator dynamics of the system. Théyperbolic equation is thus coupled with the
ordinary differential equation via the boundary condition. Optimality of this coupled system is investigated
using variational principles to seek an adjoint formulation of the optimal control problem. The results are then
applied to implement a model predictive control design for awind tunnel to eliminate a transport delay effect
that causes a poor Mach number regulation.

[. Introduction

The terminology of distributed-parameter system is usediecribe physical systems whose state variables are
functions of both space and time that are usually modeledabyab differential equations (PDEs). Optimal control
of distributed-parameter systems has been studied exédyngi mathematical literature, but applications of thipe
of control are limited in practical control engineering. pé¢ybolic PDEs are used to model transport systems whose
information is carried from one point to another within thag/stems as a function of space and timExamples
of transport systems are numerous in many physical apjlitasuch as fluid flow in gas distribution pipelirfeair
traffic systems, highway traffic system$,to name a few. These equations describe wave propagatibexisss in
transport systems to propagate information from one pairgriother within the continuum. A characteristic of a
hyperbolic system is time delay which describes a finite tthrat information is transported from one location to
another. Consider the simplest hyperbolic equation

9y Oy _
The solution of this equation is
X
y=r(t-2) 2)
a

Equation (2) describes the solution of a wave of a transporgss that propagates at a wave speadd the term
x/a is a variable transport time delay.

As with any PDEs, boundary conditions are used to specifyigorations of these transport systems. If the
information is carried in one direction without returnirggits starting position, then we say that the system is open-
loop. An example of an open-loop system is gas flow throughiraredt engine. On the other hand, if the information
returns to its starting position, then the system is saidetelbsed-loop. An example of a closed-loop system is the
cardio-vascular circulatory system. Boundary conditiassociated with closed-loop systems are usually periadic i
nature.

The flow of information is usually supplied at the system bidany by a forced process that provides a motive
force to move the information along the way by wave propagati-or example, a common device for accomplishing
this objective in fluid transport systems is a pump which $iepa positive pressure head to displace the fluid volume
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in the flow direction. Such a process whereby the control @ieg at the boundary of the continuum is called a

boundary control process. In real systems, boundary dgrvoesses are often governed by other auxiliary dynamical
processes. For example, a positive-displacement pump mdyilen by an electrical motor that imposes a constraint
on the pump speed according to the motor torque dynamics. plihg speed in this case is a boundary control
variable.

In this study, we present an optimal control method for asclafsclosed-loop hyperbolic distributed-parameter
systems whose boundary control process is constrained lynandcal system governed by a nonlinear ordinary
differential equation (ODE) via a periodic boundary coiudit The optimal control problem is formulated by an
adjoint method to seek necessary conditions for optimailigycalculus of variations. The theory is then used to
develop a model predictive linear-quadratic regulatoimoglt control that results in a modified Riccati equation. The
model predictive control computes control inputs based odehinformation at the current time that need to be apply
ahead of error signals in order to minimize system distutbanue to time delays. Thus, itis effectively a feedforward
control. We apply this theory to solve a flow control problenaiwind tunnel.

[I. Problem Formulation

Transport phenomena are governed by the conservation lguegiens which dictate the conservation of some
guantities such as traffic density, mass flux, and enthalpgs@& equations are generally hyperbolic in nature. For a
1-D system, these equations are expressed in a conseri@tioas

Oy | OF(y,x)
ot ox

wherey (z,t) : [0, L] x [0,t5] — R™in classC" is a vector of conserved quantitids(y, z) is a flux function, and
Q (y, x) is a non-homogeneous source term.

By explicit differentiation, Eq. (3) can be rewritten in as

dy dy

—+A(y,I)—+B(y,I):0 VIG[O,L],tG[O,tj] (4)
ot ox
whereA (y,z) : R" x [0,L] — R™ x R™ is a characteristic matrix such that(y,z) = Fy (y,z) andB (y, z) :
R™ x [0, L] — R™ is a non-homogeneous source term suchBig¢, z) = Q (y, z) + F. (y, z).

Equation (4) is a system of first order, quasilinear hypectegjuations due to the fact that the matAbhasn real,
distinct eigenvalues such that

+Q(y,z) =0 Vzel0,L],tel0,ty] 3)

/\1(A)<)\2(A)<...<>\m(A)<)\m+1(A)</\m+2<...<)\n(A)

forally (z,t) € R", x € [0, L], andt € [0, ¢s], wherem < n are number of negative eigenvaluesiof

The eigenvalues are the wave speeds of the transport systéthedirection of the wave propagation is called a
characteristic direction. iz > 0, the information in the continuum is carried in both the ugsm and downstream
directions by negative wave speells i = 1,2,...,m and positive wave speeds, i = m + 1,m + 2,...,n;
respectively. If the solution domainis< x < L, then for the information to be transported in the upstreasaction
by the negative wave speeds, information must exist at thaderyx = L. Similarly, information must also exist at
the boundary: = 0 in order for the information to be carried downstream by tosifive wave speeds. Therefore, the
number of upstream and downstream boundary conditionsmmatsh the number of negative and positive eigenvalues.
This is known as the boundary condition compatibility.

In a closed-loop transport system, information is carriednf one point to another and then returned back to
the starting position as illustrated in Fig. 1. To enabls thformation flow, a periodic boundary control process is
embedded within the system. For a closed-loop system, thedary conditions at = 0 are affected by the boundary
conditions atc = L since the information must be returned to its starting pmsitThus, in general for a closed-loop
system, we specify the following general nonlinear peddiundary condition for Eq. (4)

y(0,8) =g(y(L,t),u(t))  Vte[0,i] (5)

whereu (t) : [0,t;] — R™ in classC! is a boundary control vector, angl(y (L,t),u) : R" x R™ — R" is a
nonlinear forcing function that relates the transportstegctors atr = 0 andz = L and the boundary control vector
u.
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Fig. 1 - Closed-Loop Transport Model

To ensure the boundary condition compatibility for all sgif eigenvalues, the Fréchet derivative or the Jacobian
of g with respect toy (L, t) is required to have a full rank or

dim [gy(Lyt)} =n (6)

In many real systems, boundary control processes are Bctuadtrolled by other auxiliary processes. These
auxiliary processes may be dynamical so that their dynaaainde described by a nonlinear ODE

ﬁ:f(Y(Ovt)v}’(Lat)vuvv) (7)

wherev () : [0,¢¢] — R!is an auxiliary control vector that belongs to a convex stibkadmissible auxiliary control
Vea C R andf (y (0,t),y (L, 1) ,u,v) : R x R* x R™ x Rl — R™ is a nonlinear function.

Thus the auxiliary control vector actually influences the boundary control veatomwhich in turn controls the
behavior of the closed-loop transport system describeddoy(4 and the periodic boundary condition (5).

[ll.  Optimal Control Theory

Optimal control and optimization theories of hyperbolistgms has been studied extensively in mathematical
literature. Within the theoretical framework of systemygmed by PDESs, control of such systems can exist as dis-
tributed control, boundary control, interior pointwisentwl, or others. Hou and Yan studied the long time behavior
of solutions for an optimal distributed control problem fbe Navier-Stokes equatiofidNguyen et al investigated a
flow control problem with interior pointwise contrélOptimal control problems of transport systems with bougdar
control have been examined for many different types of cairgs imposed on either state or control variables. Ray-
mond and Zidani investigated necessary optimality coowitiin the form of a Pontryagin’s minimum principle for
semilinear parabolic equations with pointwise state gairss and unbounded contfoCasas et al established second
order sufficient conditions for local optimality of elligtequations with pointwise constraints on the boundaryrobnt
and equality and set-constraints on state variabl&azemi obtained adjoint equations for a degenerate hyfierbo
equationt?

Adjoint method is well-known in optimal control and optination theories as it provides an indirect method
for solving optimization problems. For a transport systemnegned by hyperbolic equations, two types of adjoint
formulation are used: discrete adjoint and continuousiatdjé\ny hyperbolic equation can generally be discretized
into a system of ODEs by means of numerical discretizatichrigues such as finite-difference or finite-element
methods. If the adjoint method is formulated with the disezesl hyperbolic equations, then this is known as discrete
adjoint method. On the other hand, continuous adjoint nteth@mormally applied directly to the original hyperbolic
equations. This method has been used in aerodynamic designization studies involving the Euler and Navier-
Stokes equations. Nadarajah et al compared the discrete and continuous adj@ithods in aerodynamic design
optimization and suggested that the continuous adjoinhatkaffords a certain advantage over the discrete adjoint
method for Navier-Stokes flow problen¥in the present study, we apply this method to the presentrbpfie system
with nonlinear differential equation constraints on a péit boundary condition. To formulate the continuous adjoi
method for this system, we seek a solution of the hyperbgditesn above that minimizes the following multi-objective
cost functional

ty L T
win J(vouv) = [ [ nydsdes [ L 60y ) e (8)
0 0 0
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where L1 is an objective function defined over the continuum of th@gtpeort system/, is an objective function
defined on the system boundary, and the supersdrigtsl L are short hand notations denoting the associated vector
guantity evaluated at = 0 andz = L, respectively.
The following assumptions are required:
(Al): Eg. (4) admits smooth solutions for shock-free conditions
(A2): v € Lo, the space of real value functionsli for which the norm|v| is square-integrable.
(A3): The Fréchet derivatives df;, Lo, B, g, andf with respect tgy, y°, y*, u, andv exist and are bounded
S0 as to satisfy the Lipschitz condition.
We note that Eq. (4) also has discontinuous solutions knaeng&opy solution$which will not be treated here.
The transport system above is posed as a boundary contidepref hyperbolic equations with nonlinear differ-
ential equation constraints.
Lemma 1let D be a nonlinear differential operator ant be its adjoint differential operator such that for some
z (z,t) € R™ andX (z,t) € R”
0z
Dz = A(?:z:
pa=2 (ATX)
- Oz
where the superscrift is the transpose operator, then the following inner prodpetation inZ, is equivalent

— (2, (aTN)") 9)

t

(D2, X)) = = (2. D"N) . + (2, (ATX) ")

t

Proof: The inner productDz, A) . ;, in Lz is

tf L
(Dz,\), ) = X' Dzdxdt
(1) o Jo

Integrating by parts yields

t L t L t
/f/ )\TDzdxdt:—/f/ zTD*Ada:dt+/f [(25) " (AF) AT = (2) " (%) A7) at
0 0 0 0 0

We define the following inner products

ty
T L T 0 T T.L T T L0
(2. (ATN)") = (2. (ATA)) = / [(25)" (M%) A" = (2) " (%) A7 at
0
Equation (9) is thus obtained.
Definition 1:Let /' : X — Y be a functional withX, Y in Banach spaces amd € X. If there exists a continuous
linear operatoV F' () : X — Y for any variationd € X such that

lim HVF (o) 6 —

e—0

F(OH—E(Z)—F(a)H_O

thenV F («) is called a Gateaux derivative 6fat o.1®
Definition 2: The following Hamiltonians are defined

Hi(y,z,A\)=L; —A'B (10)

H2 (yo,yL,u,v,,u) = L2+H/Tf (11)
We are now ready to state the necessary conditions for olitijma
Theorem:If (A1)-(A3) are fulfilled and if(y,a, v) is an optimal solution of Eq. (8), then there exist adjoint
variables\ (z,t) : [0, L] x [0,tf] — R™ andu : [0,¢;] — R that satisfy the following dual adjoint system
A+ (ATA) +H/,=0
L 0
(ATA) = H;:yL + g;L (AT)\) + g;,rLHQTyo (12)
A (:Z?, tf) =0
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. 0
p(ty) =0

with a terminal time transversality condition

L
/ L1|t:tf dx + L2|t:tf =0 (14)

0
such that the optimal control is one that satisfies the fallgWPontryagin’s minimum principle
v=arg min H (y,y" 0, v, p) (15)
v ad

Proof: Let @« = (z, p) be solutions tg3 = (¥, @) in variations for a variatiow in v, then the variation in the cost
functional from Eq. (8) is computed as

AJ(q)=VJ(B)+J(B,v+aq) —J(B,v)>0
where the Gateaux derivative dfat 3 is evaluated as
VJ(B) = <H1Ty,z>(z_’t) — (N2 () — (AN D2) ( + (Hy yo,2%),

L
+ <H2TyL’ZL>t + <H2Tu’p>t o <N=I5>t + ot (/ Lllt:tf dx + L2|t_tf>
0

From the boundary condition (5), we have the following viioias
20 = g;LzL + qu

From Lemma 1 and the variations in the boundary conditiop(#§ vanishing variations in initial conditions for
Egs. (4) and (7), this becomes

VI(B) = (A + DA+ Hy2) (@ (@) Aaty),+(g) By + 870 (ATA) + H . — (A7) 2)

L
0 .
+ <g§ (ATX) +go Hy yo + Hy , + “T’p>t — T (t5)p(ts) + 6t (/0 Li|,_y, dz + L2|t_tf>

SettingVJ (3) = 0 for arbitrary variationx results in Egs. (12)-(14). Then the variation in the costfiomal
becomes

ty . ty .
AJ(q) =/ [Hy (°,5%, 0,V +q,p) — p' ] dt—/ [Ho (3°,5%,0,v, ) — p" ] dt >0
0 0
This leads to the Pontryagin’s minimum principle
H2 (yoayLaﬁa{’_anp’) > H2 (yoay 71_17‘77;"’)
for all values of the variation.

Equation (15) is the equivalent Weierstrass condition fimrgy variations. For weak variations whers uncon-
strained and.; andL, are convex, the Pontryagin’s principle leads to the Lege/@lebsch conditiof?

H2,v (yovyLvﬁvvau’) =0 (16)
H2,vv (yoayLaﬁa‘_’au) >0
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IV. Linear-Quadratic Optimal Control for Scalar Hyperboli ¢ Systems

Linear advection hyperbolic equations are used to modeksmmamsport processes that involve small-amplitude
wave propagation in only one direction such as pressure wagagation in a fluid continuum. Our objective is to
develop a linear-quadratic regulator (LQR) for the follogilinear advection equation

1 dy Oy
— 4+ = t t)=0 17
Q(I)at+ax+ﬁ(w,)y+w(x,) a7
wherey (z,t) € R is a transport state variable(z) > 0 is the wave speed; (x, t) is a dissipative term, and (z, t)
is a disturbance.
Equation (17) is subject to a zero initial condition and aqmic boundary condition for a closed-loop system

y(0,t) = Gu(t) + Hy (L,1) (18)

whereu (t) € R™ is a boundary control vecto& : R — R x R™ is a constant-valued matrix, aifl is a constant.
The following linear dynamics is imposed on the boundarytavectoru with a zero initial condition

it = Cu+ Dv + Ey (0,1) + Fy (L, ) (19)

whereC : R — R™ x R™ is a constant-valued state transition matkix; R — R™ x R! is a constant-valued control
transition matrix, and? and F’ are constants.
We want to minimize the following linear-quadratic cost étinnal with respect te for a fixed final timet

11 1 1
min J = / [iPyQ (0,t) + §uTQu+ ivTRv dt (20)
0

whereP > 0, Q > 0, andR > 0 are weighting factors.
The dual adjoint systems from (12) and (13) for the optimaitaal problem are given as

% + % (a)) = Bar =0 (21)
a(L)A(L,t) = Ha (0) A (0,t) + HPy (0,t) + (FT + HE ) p (22)
p=-Qu—(C"T+G'E")p—GTa(0)A(0,t) — G"Py(0,1) (23)

with the transversality conditions(z,¢¢) = 0 andu (¢¢) = 0 along with the stationary condition obtained from Eq.
(16)
Rv+D =0 (24)

Equations (17)-(19) and (21)-(23) form a two-point bourydaalue PDE-ODE problem. Even though the PDEs
are linear and scalar, the two-point boundary conditioB83 &hd (22) pose a challenge in obtaining a general feedback
control solution. To see this, we solve Eq. (17) using theattaristic method which yields the following solution

y(x’t):{ 0 t<td(f£)
a(z, ) [f(t—ta(@)) —q(z,1)] t=tq(x)

wheret, (x) is a variable transport time delay(z, t) is a wave decay factor, and x, t) is a forcing function due to
the disturbance (x,t)

(25)
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The functionf (t — tq4 (z)) represents the wave propagation and must be determinedtimboundary condition
(18) as
f(t)=Gu(t)+ Ha(L,t)[f (t —ta(L)) — q(L,1)] (26)

LetT = t4 (L) be a transport delay period, then Eq. (25) has a series@oluti

n k—1 n k
fO =Gu@®)+> | [] Ha(L,t—mI)| Gu(t—kT)-> l]‘[ Ha(L,t —mT)| q(L,t —kT) (27)
k=1 Lm=0 k=0 Lm=0

Similarly, the solution of Eq. (20) is given as

(28)

o () A (. f) = 0 T < 7q(x)
(@)X (@1) { Z((iff))g(T—Td(:c)) T>74(2)

wherer =ty —t, 74 (x) =T — tq (x), and
k-1

II Ha(L,t+mT)

m=0

n

g(r)=HPy(0,t)+ HPY
k=1

y(0,t+kT)+ (FT + HE") pu(2)

HHa (L,t +mT)

n

+(F"+HET) Z w(t+kT) (29)

Equations (27) and (29) illustrate the nature of a closeg-toansport system whereby the solutions are expressed
as time-shifted series of the transport delay period. Theltieg ODEs (19) and (22) thus will contain the time-shifte
series. Therefore, in general a feedback control is difficubbtain. Nonetheless, there are two simplified solutions
in the limit that we need to consider. The first case is assetiith a short time horizon whety < T', for which
A(0,t) = 0 from Eq. (29) since the system must be causal. Then, we getligs. (27) and (29)

y(0,t) = Gu(t) — Ha (L,t)q(L,t) (30)

y(Lat):_a(Lvt)q(Lat) (31)

The second case is associated with an infinite time horizoenwh — oo, for which f (t —T) ~ f(¢) and
g (r = T) = g (7). The infinite time horizon case is possible if the time scélie linear advection equation is much
greater than the time scale of the ODE. Equivalently, thietscale separation results|in(z)| > p (C), wherep is
the spectral radius of the matr@. Utilizing the series identity

— Ha Zﬂk ko (32)
we obtain Gu(t) - Ha(L.0)q (L)
u — a y q )
y(0.1) = 1— Ha(L,1) (33)
y(tog) = HEHEO IR0 o 1 q (. 34)
a T T
(02 (0,1) = L1 [HPy aojg((f;t; HE") p(t)] (35)

In essence, the solution for atymay be assumed to be bounded between these two cases. wedetsofactoty
that represents the effect of the time horizon such@haty < 1, with v = 0 corresponding to the first case ane- 1
corresponding to the second case. Then, we are now abledma@bfeedback controt in terms of the boundary
controlu and the transport states at the boundayigs t) andy (L, t)

v(t)=-R'D"Wu-R'D"Va(L,t)q(L,1) (36)
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whereW andV are solutions of the following matrix Riccati equationsngsa backward sweep method by letting
pw=WAu+Va(L,t)q(L,t)

WC.+C/W-WDR'D'W+Q,.=0 (37)
Co' V-WDR 'D'V-WS-U=0 (38)

with
C.=C+EG+~(F+EH)Ga(L,t)[1 —~vHa(L,t)]""

Q. =Q+G PGl —yHa(L 1)
S=(F+EH)[l —~Ha(L,t)"
U=G'PH[l —~Ha(L,t)]?

We see that the optimal control solution of a linear advectiguation has a form of a Riccati solution. The Riccati
equation contains modified matrices that incorporate thdycs of the linear advection equation. The control is a
state feedback and a disturbance feedforward where thiadoiunctiong (L, ) is the disturbance that is delayed by
the time delayl". Thus, the control would not be responsive during this tirekayl We note that the control can also
be written in an output feedback form by noting that

a(L,t)q(L,t) =~a(L,t)y(0,t) =y (L,t) (39)
so that
v(t)=-R'D"Wu-R D "Vya(L,t)y(0,t) + R'D"Vy (L,1) (40)
V. Flow Control Application

We now apply the general theory to a flow control problem tailag the test section Mach number in a closed-
circuit wind tunnel. An example is the NASA Ames 11-Foot Tsanic Wind Tunnel as shown in Fig. 2.

Fig. 2 - Closed-Circuit Wind Tunnel

The fluid transport process in a closed-circuit wind tunsed igood example of a closed-loop transport process
whereby the fluid flow is recirculated through a compressoviging the boundary control action. The compressor
is controlled by two auxiliary dynamical processes: a drnivator dynamics, and an inlet guide vane (IGV) angle
dynamics. By controlling the drive motor speed and the IGylanthe flow in the test section can be set as desired.

T
The full nonlinear model of this system is described by Eqwith y (z,t) = { m po Tp } and

pA j .

_ poc” _ k-)T poctu | kpoudr (k—1)T
A= o ull To To , B= G-l
(k=T _ (k—1)*Tu (k=1)T (k—1)2Tu’¢
pA kpo u {1 + To ] - 202

whererh is the mass flowp is the pressuréel’ is the temperaturey is the densityy is the flow speed; is the speed
of sound{ is a loss factorA is the cross sectional area, and the subscript 0 denotetatdreation condition.
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The compressor provides a boundary control action at 0 andx = L that results in a total pressure rise that
recirculates the flow. Using an empirical model, we obta@ftircing functiong in the periodic boundary condition
(5) for the wind tunnel model as

i (L, t)

gy (L,t),u)= | Po (L, )(14-220”9%)) bl—be (41)

=27 dijbiwl
We (0,
To (L) {1+ b= | 22008 — }}

wherew is the compressor speedljs the IGV angle, and;, c;;, d;; are empirical coefficients derived from experi-
mental compressor performance measurements.

The drive motors employ a drive motor speed control systeahutilizes a variable resistance device known as
rheostat to control the motor speed. By varying a rotor tasee R, in the rheostat, the motor torque changes.
The difference between the motor torque and the aerodyntmjoe causes the motors to accelerate or decelerate
according to the following equation

Ky Rrws (ws —w)
[Rs (ws — w) + Ryws]® + L2w? (ws — w)

Inw =

2 Ktl [pO (Oa t) — Po (Lv t)] (42)
whereJ,, is the motor inertiaR; is the stator resistancé,, is the stator inductance;, is the synchronous speed,
K,, is the motor torque constant, aid, is the aerodynamic torque.

The inlet guide vanes are adjustable with movable trailidgeeflaps and are driven by DC field motors that are
controlled by a field voltag&’, according to the following equation

KrK . nip(L,it)u? (L, t) beciC
(b+ TE)9+ p(Lt)u” (L,t) bpciCrg

0 — KTVa B n;p (L, t) u2 (L, t) be?CH
R,

2N? NR, 2N?

(43)

whereb is the viscous friction, K is the motor torque constankr is the back-emf constanf, is the shunt
resistance/NV is the gear reduction ratio; is the number of inlet guide vanes, abd c¢, Cr o, Cy are the span,
chord, hinge moment coefficient derivative, and hinge mdroeefficient of the inlet guide vane flaps; respectively.

Typically, an aircraft model installed inside the test ggtuundergoes a series of angle of attack changes. As the
aircraft model pitch angle changes, the momentum loss athesest model generates a flow disturbance that travels
downstream from the test section to the compressor. BeaduBe fluid transport delay that exists in the system, the
feedback control at the compressor normally lags the Maahb@u response in the test section by a time delay since
the disturbance has not yet reached the compressor befeterib. This disturbance causes a pressure perturbation
that leads to a drop in the test section Mach number. Withoytarrective control before the time delay, the Mach
number will drop below a prescribed tolerance. This moésats to seek a model predictive control to minimize this
Mach number deviation by accounting for the time delay.

The flow perturbation can be modeled by Eq. (17) wittx,¢) = Apg (z,t) as the total pressure perturbation.
Linearization of Eq. (41) and neglecting the mass flow anal temperature perturbations results in Eq. (17) with the
following parameters

2
kM2 () € () [1+ kM? (x)]

plet == 2[1— M2 (x)]
_ kpocoMEf () Cp (¢ (1) Am
wi@t) = 24, L,

whereM is the Mach numbel;p is the aircraft model drag coefficient as a function of thelpanglep, the overbar
denotes the nominal condition, the subsctiptdenotes test section conditiod,, is the model reference wing area,
L,, is the model length4, is the test section area, affd= 1 for z; < x < x5 within the test section anfl = 0
otherwise.
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From the boundary condition (41), we obtain a linearizednoaury condition
y(0,t) = GAu (t) + Hy (L, t) (44)
wherey (0, ) is the total pressure perturbation at the compressorgilt, ¢) is the total pressure perturbation at the

-
compressor inlet, andu = [ Aw A0 } is the boundary control error vector comprising of the cozspor

speed erro\w, the IGV flap position erroiAd, and the compressor speed error integra: fot Awdr. The error
integral is designed to ensure a zero steady state erroeindimpressor speed. In essence, the control scheme is a
proportional-integral control. The matr® = | 2ro(00)  dpo0t) } andH = ggg((%?) are the partial derivatives
evaluated from the boundary condition (41).

The flow disturbance also creates a perturbation in the trtdgnamics of the drive motors and the IGV system,
thus resulting in the following state equation

Au = CAu+ DAv + Ey (0,t) + Fy (L, t) (45)

.
whereAv = | AR, AV, } is the augmented control input vector comprising of the aerged drive motor rotor

resistancé\ R,., the augmented IGV motor applied field voltafy®,, andC, D, E, F are partial derivatives evaluated
from the actuator dynamics, Egs. (42) and (43), as

0w  Ow 0 Ow 0 ow Ow

o 09 R, ‘ 3p0(0,0) 6poa(_L,t)
— 0 6 — 90 — — 6

1 0 O 0 0 0 0

Our objective is to design a control law that minimizes theeklaumber deviation in the test section. In particular,
we would like to maintain the Mach number within a requiredwracy of£0.001 at all times. First, we apply the
following feedback control law to illustrate the problentiiime delay

v(it)=v-RI'D'"WAu(t) ~-R'D"Vya (L, t)y(0,t) + R'D"Vy (L,t) (46)

wherev is a nominal control input at the steady state operation@fiimd tunnel.

A control simulation is performed for a test section Mach bem\/,, = 0.6 at a total pressurgy .o = 2116
psf for a representative test model. The model support octwthie test model is mounted has a second-order time
response as follows

b= b (1 - e*ﬁcosumt) (47)

whereg, is the desired pitch angle set point, = 5 sec is the time constant, angl, = 0.1 is the frequency of the
model support.
To compute the amplification factar(x, t) that appears in the control law, we solve the following PD&t ik
completely equivalent to the integral form of Eq. (25)
1 Oda da
e Wt tYa = 48
ot T ag @ Na=0 (48)
subject to an initial condition (z,0) = 1 and a boundary conditian(0, t) = 1.
To solve for Eq. (48), we discretize the wind tunnel into 48l@@withAz = 18.074 ft and L = 795 ft. We then
apply the following upwind finite-difference method to contga (z, t)

Qij — Qi1
aij+1 = aij — ;-1 At (7J AL L+ ﬁi—l,jai—l,j) (49)
wherei = 2,3, ...,45is the index in ther axis,j = 1,2,...,is the time index, and\t = 0.01 sec is chosen in order
to satisfy the Courant-Friedrichs-Lewy (CFL) stabilitynchtion'3
o; At
=<1 50
max —— < (50)

The solution surface aof (z, t) is plotted in Fig. 3
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Fig. 3 - Solution Surface af (z, t)

The dynamic matrices corresponding to the test section Maofiber of 0.6 at a compressor speed of 455 rpm are
computed to be

—0.059709 1.3223 0 —0.32543 0 —0.0019318
C= 0 -1.3565x 107° 0 |, D= 0 7.6358 x 107° |, E= 0 )
1 0 0 0 0 0
—0.0011615
F=|316713x107° |, G=| —684.50 25.5415 0 |, H =1.6013
0

The weighting factors are selected such tRat 0.001, Q = diag (0.01,0), andR. = diag (1,1 x 1077). The
weighting factors.2 and Ry» for the IGV system are much smaller than the weighting factpr; and Ry, for
the drive motors since we also want to control the compresseed as accurately as possible and want the IGV flap
position to compensate for the total pressure disturbaecergted by the test model.

Fig. 4(a) is a plot of the computed augmented rotor resistamgut to the drive motors foy = 0 andy = 1.
To regulate the test section Mach number, it can be seenttbabtor resistance must decrease as this would result
in a corresponding increase in the drive motor input torquecmpensate for the increase in the total pressure loss
generated by the test model. Fig. 4(b) is a plot of the conthatggmented IGV motor applied field voltage input to
the IGV system fory = 0 and~y = 1. In both Figs. 4(a) and 4(b), the effectefcan generally be interpreted as the
degree of control efforts. Thus, the control effort rangesfa minimum value fory = 0 to a maximum value for
~ = 1. Itis also noted that the augmented control inputs exhibiiha delay of about 3 sec, which is the time it takes
for the disturbance generated by the test model in the tetbedo propagate downstream to the compressor inlet.
This time delay is computed to k&T" = t,4 (L) — t4 (x;) = 3.56 sec.

The response of the total pressure perturbation due to ttmalpcontrol augmentation is plotted in Fig. 5. As
can be seen, the total pressure perturbation between thgressor exit att = 0 and the test section at = 470 ft
is effectively controlled to a zero value as desired. A dophee total pressure occurs immediately right after the test
model and propagates to the compressor inlet.
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Fig. 4 - Augmented Control Inputs to Drive Motors (a) and IGyst&m (b)

yix.t)

X, ft

t, sec

Fig. 5 - Solution Surface of Total Pressure Perturbation

As noted in Fig. 4, the time delaxT" causes the control to be unresponsive during this time deldle the
aerodynamic flow condition is changing continuously in thedatunnel. This is an inherent problem with the Mach
number feedback control in a wind tunnel. To effectively dlarthe total pressure disturbance generated by the test
model, a model predictive control is proposed using theWalhg disturbance feedforward control law

v(t)=v-RID'WAu(t+At) —R'D"Va(L,t + At)q(L,t + At) (51)

whereAu (t + At) andq (L, t + At) must be computed a priori from a model described by Eq. (44), @nd (45).
Thus, the augmented control inputs are evaluated in adwafnite error signals and then added to the nominal
control values. Therefore, the model predictive contraitigctly an open-loop control that is based on the computed
control inputs from the math model using the estimated doadficient of the test model and time history of the model
support. The computed test section Mach number response toptimal control augmentation using the feedback
control in EqQ. (46) is plotted in Fig. 6(a) and using the maateldictive control in Eq. (51) is plotted in Fig. 6(b).
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Fig. 6 - Test Section Mach Number Response to Feedback C¢a)rand to Model Predictive Control (b)

It can be seen that the feedback control brings the tesibseltach number closer to its set point, but is unable
to maintain the test section Mach number to within a requétecuracy of+0.001 at all times. This is due to the
time delay which causes the aerodynamic flow condition tmgbavithout any control input during the first 3.56 sec,
thereby resulting in the test section Mach number droppgigvb the tolerance band before the augmented control
inputs to the drive motors and the IGV system become suffit@compensate for the total pressure perturbation. In
contrast, the model predictive control is clearly much neffective in maintaining the test section Mach number well
within the required accuracy at all times. In all cases, liggies of control fory = 0 seems to suffer a steady state
error due to an insufficient control effort. The Mach numbesponse surface is plotted in Fig. 7, showing the Mach
number distribution throughout the wind tunnel. The testisa Mach number responsemat= 470 ft is in “trough”
below the first spike. The two spikes correspond to locatitend the test model and at the compressor inlet. This
plot illustrates that a boundary control process can ugwally control a closed-loop system at either one of the two
boundaries. In this case, the cost functional is designeelfolate the system responsecat 0.

Fig. 7 - Mach Number Response Distribution

The compressor speed response to the control input augtioentaplotted in Fig. 8(a) for the feedback control
and in Fig. 8(b) for the model predictive control. The feedbeontrol is unable to maintain the compressor speed
set point to within a required accuracy #f).1 rpm. In contrast, the required compressor speed accurassiy
achieved by the model predictive control fpe= 1.

13 of 16

American Institute of Aeronautics and Astronautics



Fig. 8 - Compressor Speed Response to Feedback Controld#&) Model Predictive Control (b)

The IGV flap position response to the control input augméntas plotted in Figs. 9(a) and 9(b) corresponding
respectively to the feedback control and the model pregictdontrol. The time delay in the IGV flap position response
is noticeable between the feedback control and the moddigtine= control. Thus, this suggests that the effectivenes
of the model predictive control is attributed largely to ttmntrol input augmentation to the IGV system.

0, deg

Fig. 9 - IGV Flap Position Response to Feedback Control (d)tafModel Predictive Control (b)

To demonstrate the effectiveness of the model predictivengp control fory = 1 over the enitre subsonic
operating envelope, we compute the control augmentatioalfdMach numbers from 0.4 to 0.9. The results are
plotted in Fig. 10. As can be seen, the model predictive agdtaantrol is highly effective for all Mach numbers up to
0.8. The Mach number perturbation is well within the tole@nf+0.001. However, at a Mach number of 0.9, there is
a rapid increase in the Mach number perturbation that excisedtolerance. The sudden change in the Mach number
perturbation at a Mach number of 0.9 is directly attributedhte well-known phenomenon of transonic flow where
many linear perturbation theories break down near a Machoeuwof unity. The tern® (z, t) in the linear perturbation
model reveals that it becomes undefined #6r= 1. Thus, the validity of this model excludes the transonidarg
near a Mach number of unity.
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Fig. 10 - Test Section Subsonic Mach Number Responses

In general, the accuracy of a model predictive control islimsted upon the goodness of the parameter estimation
of the disturbance. Any significant deviation from the plednrajectory of the total pressure disturbance will likely
cause the Mach number to not meet the required accuracy., Thusplement a predictive control scheme, it is
necessary to have a priori knowledge of the time variatiotheftotal pressure disturbance as a function of the drag
coefficient of the test model. During a pitch polar, the dragfficient generally varies as a function of the inputs
parameters that include the pitch angle, the Mach numbdrttenReynolds number. A parameter estimation process
can be established using a recursive least-squares ora network algorithm to estimate on-line the drag coeffitien
from the input parameters. In addition, using the knowledfjthe time response of the model support system, a
trajectory of the total pressure disturbancét) can be estimated and used to predict the control augmemfadion
the math model. Using the predictive results of the contughaentation, the compressor control would be switched to
an open-loop mode and begin its actuation simultaneoustytive model support system. At the end of the actuation,
the compressor control would then be switched back to a feddinode. Because the control is a feedforward scheme,
stability should not be an issue. The model predictive ogtioontrol thus potentially offers a significant advantage
over the current feedback control approach which has bemousgtrated by simulations and observations to be unable
to hold the test section Mach number to within a specified eayuduring a continuous pitch polar of the test model.

VI. Conclusions

This paper presents some recent results in optimal corfteadistributed-parameter system governed by first order,
quasilinear hyperbolic partial differential equationattis controlled by a boundary control process via a periodic
boundary condition. The boundary control is further camiged by an ordinary differential equation that models
an actuator dynamics that exists at the boundary of the mysthe resulting coupled hyperbolic partial-ordinary
differential equation system arises in many physical @ggithns involving transport processes such as traffic ad flui
flow. Necessary conditions for optimality is derived forstilsiystem using the adjoint method which is formulated in
terms of dual Hamiltonian functions for the partial diffatial equation and ordinary differential equation systems
A linear-quadratic optimal control is developed that réesin a two-point boundary value problem involving time-
shifted solutions due to the periodic boundary conditiopirBroducing a time horizon parameter, the optimal control
problem is found to have a Riccati solution. The results pied to design a model predictive control for the Mach
number in a wind tunnel. A feedback control and and a modaliptige control are designed to regulate the test
section Mach number due to a total pressure disturbanceajeddoy a test model pitch motion. The feedback control
is unable to maintain the test section Mach number to wittprescribed tolerance due to a time delay in the control
inputs. In contrast, the model predictive control is showibé highly effective in maintaining the test section Mach
number to within the required accuracy by relying on a modedijztion of the control inputs in advance in order to
eliminate the time delay effect.
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